Generalized L-Spline Wavelet Bases
نویسندگان
چکیده
We build wavelet-like functions based on a parametrized family of pseudo-differential operators L~ν that satisfy some admissibility and scalability conditions. The shifts of the generalized B-splines, which are localized versions of the Green function of L~ν , generate a family of L-spline spaces. These spaces have the approximation order equal to the order of the underlying operator. A sequence of embedded spaces is obtained by choosing a dyadic scale progression a = 2. The consecutive inclusion of the spaces yields the refinement equation, where the scaling filter depends on scale. The generalized L-wavelets are then constructed as basis functions for the orthogonal complements of spline spaces. The vanishing moment property of conventional wavelets is generalized to the vanishing null space element property. In spite of the scale dependence of the filters, the wavelet decomposition can be performed using an adapted version of Mallat’s filterbank algorithm.
منابع مشابه
Characterization of Biorthogonal Cardinal Spline Wavelet Bases
In both applications and wavelet theory, the spline wavelets are especially interesting, in part because of their simple structure. In a previous paper we proved that the function m;l is an m th order spline wavelet having an l th order spline dual wavelet. This enabled us to derive biorthogonal spline wavelet bases. In this paper we rst study the general structure of cardinal spline wavelets, ...
متن کامل(Microsoft Word - spie2003.doc)
We show that a multi-dimensional scaling function of order γ (possibly fractional) can always be represented as the convolution of a polyharmonic B-spline of order γ and a distribution with a bounded Fourier transform which has neither order nor smoothness. The presence of the B-spline convolution factor explains all key wavelet properties: order of approximation, reproduction of polynomials, v...
متن کاملNonparametric learning and Regularization
Several nonparametric methods in a regression model are presented. First, the most classical ones: piecewise polynomial estimators, estimation with Spline bases, kernel estimators and projection estimators on orthonormal bases (such as Fourier or wavelet bases). Since these methods suffer from the curse of dimensionality, we also present Generalized Additive Models and CART regression models. T...
متن کاملGeneralized biorthogonal Daubechies wavelets
We propose a generalization of the Cohen-Daubechies-Feauveau (CDF) and 9/7 biorthogonal wavelet families. This is done within the framework of non-stationary multiresolution analysis, which involves a sequence of embedded approximation spaces generated by scaling functions that are not necessarily dilates of one another. We consider a dual pair of such multiresolutions, where the scaling functi...
متن کاملNumerical solution of the integral equation of the second kind by using wavelet bases of Hermite cubic splines
In this paper, We use the wavelet bases of Hermite cubic splines to solve the second kind integral equations xCi) -11 K(t,s)x(s)ds = y(t), t E [0,1]. A pair of wavelets are constructed on the basis of Hermite cubic spline~: This wavelets are in C1 and supported on [0,2]. Moreover, one wavelet is symmetric, and the other is anti-symmetric. This spline wavelets are then adapted to the interval [0...
متن کامل